Der Dijkstra-Algorithmus ermöglicht es uns, den kürzesten Weg zwischen zwei beliebigen Eckpunkten eines Graphen zu finden.
Es unterscheidet sich vom minimalen Spannbaum, da der kürzeste Abstand zwischen zwei Scheitelpunkten möglicherweise nicht alle Scheitelpunkte des Diagramms enthält.
Wie der Dijkstra-Algorithmus funktioniert
Der Dijkstra-Algorithmus basiert auf der Grundlage, dass jeder Unterpfad B -> D
des kürzesten Pfades A -> D
zwischen den Scheitelpunkten A und D auch der kürzeste Pfad zwischen den Scheitelpunkten B und D ist.

Djikstra hat diese Eigenschaft in die entgegengesetzte Richtung verwendet, dh wir überschätzen den Abstand jedes Scheitelpunkts vom Startscheitelpunkt. Dann besuchen wir jeden Knoten und seine Nachbarn, um den kürzesten Unterpfad zu diesen Nachbarn zu finden.
Der Algorithmus verwendet einen gierigen Ansatz in dem Sinne, dass wir die nächstbeste Lösung finden, in der Hoffnung, dass das Endergebnis die beste Lösung für das gesamte Problem ist.
Beispiel für den Dijkstra-Algorithmus
Es ist einfacher, mit einem Beispiel zu beginnen und dann über den Algorithmus nachzudenken.








Djikstras Algorithmus-Pseudocode
Wir müssen den Pfadabstand jedes Scheitelpunkts einhalten. Wir können das in einem Array der Größe v speichern, wobei v die Anzahl der Eckpunkte ist.
Wir wollen auch den kürzesten Weg finden können, nicht nur die Länge des kürzesten Weges kennen. Dazu ordnen wir jeden Scheitelpunkt dem Scheitelpunkt zu, der zuletzt seine Pfadlänge aktualisiert hat.
Sobald der Algorithmus beendet ist, können wir vom Zielscheitelpunkt zum Quellscheitelpunkt zurückkehren, um den Pfad zu finden.
Eine Warteschlange mit minimaler Priorität kann verwendet werden, um den Scheitelpunkt mit der geringsten Pfadentfernung effizient zu empfangen.
function dijkstra(G, S) for each vertex V in G distance(V) <- infinite previous(V) <- NULL If V != S, add V to Priority Queue Q distance(S) <- 0 while Q IS NOT EMPTY U <- Extract MIN from Q for each unvisited neighbour V of U tempDistance <- distance(U) + edge_weight(U, V) if tempDistance < distance(V) distance(V) <- tempDistance previous(V) <- U return distance(), previous()
Code für den Dijkstra-Algorithmus
Die Implementierung des Dijkstra-Algorithmus in C ++ ist unten angegeben. Die Komplexität des Codes kann verbessert werden, aber die Abstraktionen sind zweckmäßig, um den Code mit dem Algorithmus in Beziehung zu setzen.
Python Java C C ++ # Dijkstra's Algorithm in Python import sys # Providing the graph vertices = ((0, 0, 1, 1, 0, 0, 0), (0, 0, 1, 0, 0, 1, 0), (1, 1, 0, 1, 1, 0, 0), (1, 0, 1, 0, 0, 0, 1), (0, 0, 1, 0, 0, 1, 0), (0, 1, 0, 0, 1, 0, 1), (0, 0, 0, 1, 0, 1, 0)) edges = ((0, 0, 1, 2, 0, 0, 0), (0, 0, 2, 0, 0, 3, 0), (1, 2, 0, 1, 3, 0, 0), (2, 0, 1, 0, 0, 0, 1), (0, 0, 3, 0, 0, 2, 0), (0, 3, 0, 0, 2, 0, 1), (0, 0, 0, 1, 0, 1, 0)) # Find which vertex is to be visited next def to_be_visited(): global visited_and_distance v = -10 for index in range(num_of_vertices): if visited_and_distance(index)(0) == 0 and (v < 0 or visited_and_distance(index)(1) <= visited_and_distance(v)(1)): v = index return v num_of_vertices = len(vertices(0)) visited_and_distance = ((0, 0)) for i in range(num_of_vertices-1): visited_and_distance.append((0, sys.maxsize)) for vertex in range(num_of_vertices): # Find next vertex to be visited to_visit = to_be_visited() for neighbor_index in range(num_of_vertices): # Updating new distances if vertices(to_visit)(neighbor_index) == 1 and visited_and_distance(neighbor_index)(0) == 0: new_distance = visited_and_distance(to_visit)(1) + edges(to_visit)(neighbor_index) if visited_and_distance(neighbor_index)(1)> new_distance: visited_and_distance(neighbor_index)(1) = new_distance visited_and_distance(to_visit)(0) = 1 i = 0 # Printing the distance for distance in visited_and_distance: print("Distance of ", chr(ord('a') + i), " from source vertex: ", distance(1)) i = i + 1
// Dijkstra's Algorithm in Java public class Dijkstra ( public static void dijkstra(int()() graph, int source) ( int count = graph.length; boolean() visitedVertex = new boolean(count); int() distance = new int(count); for (int i = 0; i < count; i++) ( visitedVertex(i) = false; distance(i) = Integer.MAX_VALUE; ) // Distance of self loop is zero distance(source) = 0; for (int i = 0; i < count; i++) ( // Update the distance between neighbouring vertex and source vertex int u = findMinDistance(distance, visitedVertex); visitedVertex(u) = true; // Update all the neighbouring vertex distances for (int v = 0; v < count; v++) ( if (!visitedVertex(v) && graph(u)(v) != 0 && (distance(u) + graph(u)(v) < distance(v))) ( distance(v) = distance(u) + graph(u)(v); ) ) ) for (int i = 0; i < distance.length; i++) ( System.out.println(String.format("Distance from %s to %s is %s", source, i, distance(i))); ) ) // Finding the minimum distance private static int findMinDistance(int() distance, boolean() visitedVertex) ( int minDistance = Integer.MAX_VALUE; int minDistanceVertex = -1; for (int i = 0; i < distance.length; i++) ( if (!visitedVertex(i) && distance(i) < minDistance) ( minDistance = distance(i); minDistanceVertex = i; ) ) return minDistanceVertex; ) public static void main(String() args) ( int graph()() = new int()() ( ( 0, 0, 1, 2, 0, 0, 0 ), ( 0, 0, 2, 0, 0, 3, 0 ), ( 1, 2, 0, 1, 3, 0, 0 ), ( 2, 0, 1, 0, 0, 0, 1 ), ( 0, 0, 3, 0, 0, 2, 0 ), ( 0, 3, 0, 0, 2, 0, 1 ), ( 0, 0, 0, 1, 0, 1, 0 ) ); Dijkstra T = new Dijkstra(); T.dijkstra(graph, 0); ) )
// Dijkstra's Algorithm in C #include #define INFINITY 9999 #define MAX 10 void Dijkstra(int Graph(MAX)(MAX), int n, int start); void Dijkstra(int Graph(MAX)(MAX), int n, int start) ( int cost(MAX)(MAX), distance(MAX), pred(MAX); int visited(MAX), count, mindistance, nextnode, i, j; // Creating cost matrix for (i = 0; i < n; i++) for (j = 0; j < n; j++) if (Graph(i)(j) == 0) cost(i)(j) = INFINITY; else cost(i)(j) = Graph(i)(j); for (i = 0; i < n; i++) ( distance(i) = cost(start)(i); pred(i) = start; visited(i) = 0; ) distance(start) = 0; visited(start) = 1; count = 1; while (count < n - 1) ( mindistance = INFINITY; for (i = 0; i < n; i++) if (distance(i) < mindistance && !visited(i)) ( mindistance = distance(i); nextnode = i; ) visited(nextnode) = 1; for (i = 0; i < n; i++) if (!visited(i)) if (mindistance + cost(nextnode)(i) < distance(i)) ( distance(i) = mindistance + cost(nextnode)(i); pred(i) = nextnode; ) count++; ) // Printing the distance for (i = 0; i < n; i++) if (i != start) ( printf("Distance from source to %d: %d", i, distance(i)); ) ) int main() ( int Graph(MAX)(MAX), i, j, n, u; n = 7; Graph(0)(0) = 0; Graph(0)(1) = 0; Graph(0)(2) = 1; Graph(0)(3) = 2; Graph(0)(4) = 0; Graph(0)(5) = 0; Graph(0)(6) = 0; Graph(1)(0) = 0; Graph(1)(1) = 0; Graph(1)(2) = 2; Graph(1)(3) = 0; Graph(1)(4) = 0; Graph(1)(5) = 3; Graph(1)(6) = 0; Graph(2)(0) = 1; Graph(2)(1) = 2; Graph(2)(2) = 0; Graph(2)(3) = 1; Graph(2)(4) = 3; Graph(2)(5) = 0; Graph(2)(6) = 0; Graph(3)(0) = 2; Graph(3)(1) = 0; Graph(3)(2) = 1; Graph(3)(3) = 0; Graph(3)(4) = 0; Graph(3)(5) = 0; Graph(3)(6) = 1; Graph(4)(0) = 0; Graph(4)(1) = 0; Graph(4)(2) = 3; Graph(4)(3) = 0; Graph(4)(4) = 0; Graph(4)(5) = 2; Graph(4)(6) = 0; Graph(5)(0) = 0; Graph(5)(1) = 3; Graph(5)(2) = 0; Graph(5)(3) = 0; Graph(5)(4) = 2; Graph(5)(5) = 0; Graph(5)(6) = 1; Graph(6)(0) = 0; Graph(6)(1) = 0; Graph(6)(2) = 0; Graph(6)(3) = 1; Graph(6)(4) = 0; Graph(6)(5) = 1; Graph(6)(6) = 0; u = 0; Dijkstra(Graph, n, u); return 0; )
// Dijkstra's Algorithm in C++ #include #include #define INT_MAX 10000000 using namespace std; void DijkstrasTest(); int main() ( DijkstrasTest(); return 0; ) class Node; class Edge; void Dijkstras(); vector* AdjacentRemainingNodes(Node* node); Node* ExtractSmallest(vector& nodes); int Distance(Node* node1, Node* node2); bool Contains(vector& nodes, Node* node); void PrintShortestRouteTo(Node* destination); vector nodes; vector edges; class Node ( public: Node(char id) : id(id), previous(NULL), distanceFromStart(INT_MAX) ( nodes.push_back(this); ) public: char id; Node* previous; int distanceFromStart; ); class Edge ( public: Edge(Node* node1, Node* node2, int distance) : node1(node1), node2(node2), distance(distance) ( edges.push_back(this); ) bool Connects(Node* node1, Node* node2) ( return ( (node1 == this->node1 && node2 == this->node2) || (node1 == this->node2 && node2 == this->node1)); ) public: Node* node1; Node* node2; int distance; ); /////////////////// void DijkstrasTest() ( Node* a = new Node('a'); Node* b = new Node('b'); Node* c = new Node('c'); Node* d = new Node('d'); Node* e = new Node('e'); Node* f = new Node('f'); Node* g = new Node('g'); Edge* e1 = new Edge(a, c, 1); Edge* e2 = new Edge(a, d, 2); Edge* e3 = new Edge(b, c, 2); Edge* e4 = new Edge(c, d, 1); Edge* e5 = new Edge(b, f, 3); Edge* e6 = new Edge(c, e, 3); Edge* e7 = new Edge(e, f, 2); Edge* e8 = new Edge(d, g, 1); Edge* e9 = new Edge(g, f, 1); a->distanceFromStart = 0; // set start node Dijkstras(); PrintShortestRouteTo(f); ) /////////////////// void Dijkstras() ( while (nodes.size()> 0) ( Node* smallest = ExtractSmallest(nodes); vector* adjacentNodes = AdjacentRemainingNodes(smallest); const int size = adjacentNodes->size(); for (int i = 0; i at(i); int distance = Distance(smallest, adjacent) + smallest->distanceFromStart; if (distance distanceFromStart) ( adjacent->distanceFromStart = distance; adjacent->previous = smallest; ) ) delete adjacentNodes; ) ) // Find the node with the smallest distance, // remove it, and return it. Node* ExtractSmallest(vector& nodes) ( int size = nodes.size(); if (size == 0) return NULL; int smallestPosition = 0; Node* smallest = nodes.at(0); for (int i = 1; i distanceFromStart distanceFromStart) ( smallest = current; smallestPosition = i; ) ) nodes.erase(nodes.begin() + smallestPosition); return smallest; ) // Return all nodes adjacent to 'node' which are still // in the 'nodes' collection. vector* AdjacentRemainingNodes(Node* node) ( vector* adjacentNodes = new vector(); const int size = edges.size(); for (int i = 0; i node1 == node) ( adjacent = edge->node2; ) else if (edge->node2 == node) ( adjacent = edge->node1; ) if (adjacent && Contains(nodes, adjacent)) ( adjacentNodes->push_back(adjacent); ) ) return adjacentNodes; ) // Return distance between two connected nodes int Distance(Node* node1, Node* node2) ( const int size = edges.size(); for (int i = 0; i Connects(node1, node2)) ( return edge->distance; ) ) return -1; // should never happen ) // Does the 'nodes' vector contain 'node' bool Contains(vector& nodes, Node* node) ( const int size = nodes.size(); for (int i = 0; i < size; ++i) ( if (node == nodes.at(i)) ( return true; ) ) return false; ) /////////////////// void PrintShortestRouteTo(Node* destination) ( Node* previous = destination; cout << "Distance from start: " id
node2 == node) ( cout << "adjacent: " id
Dijkstra's Algorithm Complexity
Time Complexity: O(E Log V)
where, E is the number of edges and V is the number of vertices.
Space Complexity: O(V)
Dijkstra's Algorithm Applications
- To find the shortest path
- In social networking applications
- In a telephone network
- To find the locations in the map